Increased Artemis levels confer radioresistance to both high and low LET radiation exposures
نویسندگان
چکیده
BACKGROUND Artemis has a defined role in V(D)J recombination and has been implicated in the repair of radiation induced double-strand breaks. However the exact function(s) of Artemis in DNA repair and its preferred substrate(s) in vivo remain undefined. Our previous work suggests that Artemis is important for the repair of complex DNA damage like that inflicted by high Linear Energy Transfer (LET) radiation. To establish the contribution of Artemis in repairing DNA damage caused by various radiation qualities, we evaluated the effect of over-expressing Artemis on cell survival, DNA repair, and cell cycle arrest after exposure to high and low LET radiation. RESULTS Our data reveal that Artemis over-expression confers marked radioprotection against both types of radiation, although the radioprotective effect was greater following high LET radiation. Inhibitor studies reveal that the radioprotection imparted by Artemis is primarily dependent on DNA-PK activity, and to a lesser extent on ATM kinase activity. Together, these data suggest a DNA-PK dependent role for Artemis in the repair of complex DNA damage. CONCLUSIONS These findings indicate that Artemis levels significantly influence radiation toxicity in human cells and suggest that Artemis inhibition could be a practical target for adjuvant cancer therapies.
منابع مشابه
Restoration of G1 chemo/radioresistance and double-strand-break repair proficiency by wild-type but not endonuclease-deficient Artemis
Deficiency in Artemis is associated with lack of V(D)J recombination, sensitivity to radiation and radiomimetic drugs, and failure to repair a subset of DNA double-strand breaks (DSBs). Artemis harbors an endonuclease activity that trims both 5'- and 3'-ends of DSBs. To examine whether endonucleolytic trimming of terminally blocked DSBs by Artemis is a biologically relevant function, Artemis-de...
متن کاملNitric oxide radicals choreograph a radioadaptive response.
The reduced biological effects of radiation exposure seen in cells after conditioning exposures to a low dose or at a low-dose rate (i.e., the acquisition of resistance against high-dose radiation) is called the "radioadaptive response" and many studies concerning this phenomenon have been reported since the 1980s. Radioadaptive responses have been observed using various end points, such as chr...
متن کاملAcquired radioresistance of hematopoietic progenitors (granulocyte/monocyte colony-forming units) during chronic radiation leukemogenesis.
Protracted exposure of dogs to low daily doses of whole-body gamma-radiation (7.5 cGy/day for duration of life) elicits a high incidence of myeloid leukemia or related myeloproliferative disorders. Under such exposure, vital hematopoietic progenitors [granulocyte/monocyte colony-forming units in agar (CFU-GM)] acquire increased radioresistance along with renewed proliferative capacity at an ear...
متن کاملTrack detection on the cells exposed to high LET heavy-ions by CR-39 plastic and terminal deoxynucleotidyl transferase (TdT)
Background: The fatal effect of ionizing radiation on cells depends on Linear Energy Transfer (LET) level. The distribution of ionizing radiation is sparse and homogeneous for low LET radiations such as X or γ, but it is dense and concentrated for high LET radiation such as heavy-ions radiation. Material and Methods: Chinese hamster ovary cells (CHO-K1) were exposed to 4 Gy Fe-ion 2000 keV/...
متن کاملInduction of cancer stem-like cells in A549 cells after exposure to carbon ions and X-rays
Background: Cancer stem-like cells (CSCs) play a crucial role in the initiation, progression, and recurrence of cancer. Evidence indicates that the high linear energy transfer (LET) carbon ion beam is more effective against CSCs than the conventional X-ray beam. Carbon ion radiotherapy is considered as a promising cancer strategy, however, information about whether, or not, new CSCs are induced...
متن کامل